Source Publication
Biotechnology for Biofuels
Document Type
Article
Publication Date
12-21-2015
DOI
10.1186/s13068-015-0379-8
Abstract
Background
The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process.
Results
By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493).
Conclusions
Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
Recommended Citation
Vermaas et al. "Mechanism of lignin inhibition of enzymatic biomass deconstruction." Biotechnology for Biofuels 8, no. 217 (2015). DOI: 10.1186/s13068-015-0379-8.
Submission Type
Publisher's Version