Source Publication (e.g., journal title)

BioResources

Document Type

Article

Publication Date

11-2014

Abstract

Biochars form recalcitrant carbon and increase water and nutrient retention in soils; however, the magnitude is contingent upon production conditions and thermo-chemical conversion processes. Herein we aim at (i) characterizing switchgrass (Panicum virgatum L.)-biochar morphology, (ii) estimating water-holding capacity under increasing ratios of char: soil; and, (iii) determining nutrient profile variation as a function of pyrolysis conversion methodologies (i.e. continuous, auger pyrolysis system versus batch pyrolysis systems) for terminal use as a soil amendment. Auger system chars produced at 600 °C had the greatest lignin portion by weight among the biochars produced from the continuous system. On the other hand, a batch pyrolysis system (400 °C – 3h) yielded biochar with 73.10% lignin (12 fold increases), indicating higher recalcitrance, whereas lower production temperatures (400 °C) yielded greater hemicellulose (i.e. greater mineralization promoting substrate). Under both pyrolysis methods, increasing biochar soil application rates resulted in linear decreases in bulk density (g cm-3). Increases in auger-char (400 °C) applications increased soil water-holding capacities; however, application rates of >2 Mt ha-1 are required. Pyrolysis batch chars did not influence water-holding abilities (P>0.05). Biochar macro and micronutrients increased, as the pyrolysis temperature increased in the auger system from 400 to 600 °C, and the residence time increased in the batch pyrolysis system from 1 to 3 h. Conversely, nitrogen levels tended to decrease under the two previously mentioned conditions. Consequently, not all chars are inherently equal, in that varying operation systems, residence times, and production conditions greatly affect uses as a soil amendment and overall rate of efficacy.

Comments

This article was published openly thanks to the University of Tennessee Open Publishing Support Fund.

Submission Type

Publisher's Version

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS