Importance of Genotype on Carotenoid and Chlorophyll Levels in Broccoli Heads
Document Type
Article
Publication Date
2009
Abstract
Carotenoids are secondary plant metabolites in vegetables known to be essential in the human diet and reported to confer various positive health-promoting effects when consumed. Brassica oleracea L. vegetables like kale, cabbage, and broccoli are recognized as excellent sources of dietary carotenoids. Broccoli has emerged as the most important B. oleracea crop in the United States and it likely supplies more carotenoids to the U.S. diet than the other crops of this species. However, very little is known about the general carotenoid profile of this important vegetable or the levels of specific carotenoids and how they might vary among genotypes. Thus, the objectives of this study were to assess carotenoid profiles of different inbred broccoli heads; to assess chlorophyll concentrations measured simultaneously during carotenoid assays; to determine the relative effects of genotype versus environment in influencing head carotenoid levels; and to examine phenotypic correlations between carotenoid levels and other traits. Results show lutein to be the most abundant carotenoid in broccoli heads ranging from 65.3 to 139.6 µg·g–1 dry mass (DM) among nine inbreds tested in three environments. Genotype had a highly significant effect on lutein levels in broccoli heads and the ratio of σ2g/σ2p for this carotenoid was 0.84. Violaxanthin also exhibited a significant genotype effect, but it was found at lower levels (17.9 to 35.4 µg·g–1 DM) than lutein. β-carotene and neoxanthin were detected at levels similar to violaxanthin, but genotypic differences were not detected when all environments were compared. This was also true for antheraxanthin, which was detectable in all genotypes at lower levels (mean of 13.3 µg·g–1 DM) than the other carotenoids. Significant genotypic differences were observed for both chlorophyll a and b among the studied inbreds; however, no environment or genotype-by-environment effects were observed with these compounds. Results indicated that most carotenoids measured were positively and significantly correlated with one another, indicating that higher levels of one carotenoid were typically associated with higher levels of others. This study emphasizes the relative importance of lutein in broccoli heads and the key role that genotype plays with this compound, ultimately indicating that breeding cultivars with increased levels of this particular carotenoid may be feasible.
Recommended Citation
Farnham, Mark W., Kopsell, Dean A. Importance of Genotype on Carotenoid and Chlorophyll Levels in Broccoli Heads HortScience 2009 44: 1248-1253