Source Publication (e.g., journal title)
Nature Communications
Document Type
Article
Publication Date
3-7-2017
DOI
10.1038/ncomms14721
Abstract
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.
Recommended Citation
Fangfei Ming, Daniel Mulugeta, Weisong Tu, Tyler S. Smith, Paolo Vilmercati, Geunseop Lee, Ying-Tzu Huang, Renee D. Diehl, Paul C. Snijders & Hanno H. Weitering. “Hidden Phase in a Two-Dimensional Sn Layer Stabilized by Modulation Hole Doping.” Nature Communications 8 (2017). http://dx.doi.org/10.1038/ncomms14721.
Submission Type
Publisher's Version
Comments
This article was published openly thanks to the University of Tennessee Open Publishing Support Fund.
Licensed under a Creative Commons Attribution 4.0 International license.