Inflammatory Mechanisms in Diabetes: Lessons from the B-cell

Document Type

Article

Publication Date

2003

Abstract

Inflammation plays an important role in the destruction of pancreatic islet B-cells that leads to type I diabetes. This involves infiltration of T-cells and macrophages into the islets and local production of inflammatory cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF)-a, and interferon (IFN)-y. Our laboratory has developed several strategies for protecting B-cells against oxidative stress and cytokine-induced cytotoxicity. These include a cytokine selection strategy that results in cell lines that are resistant to the combined effects of IL-1B+IFN-y. More recently, we have combined the cytokine selection procedure with overexpression of the antiapoptotic gene bcl-2, resulting in cell lines with greater resistance to oxidative stress and cytokine-induced damage than achieved with either procedure alone. This article summarizes this work and the remarkably divergent mechanisms by which protection is achieved in the different model systems. We also discuss the potential relevance of insights gained from these approaches for enhancing islet cell survival and function in both major forms of diabetes.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS