Inflammatory Mechanisms in Diabetes: Lessons from the B-cell
Document Type
Article
Publication Date
2003
Abstract
Inflammation plays an important role in the destruction of pancreatic islet B-cells that leads to type I diabetes. This involves infiltration of T-cells and macrophages into the islets and local production of inflammatory cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF)-a, and interferon (IFN)-y. Our laboratory has developed several strategies for protecting B-cells against oxidative stress and cytokine-induced cytotoxicity. These include a cytokine selection strategy that results in cell lines that are resistant to the combined effects of IL-1B+IFN-y. More recently, we have combined the cytokine selection procedure with overexpression of the antiapoptotic gene bcl-2, resulting in cell lines with greater resistance to oxidative stress and cytokine-induced damage than achieved with either procedure alone. This article summarizes this work and the remarkably divergent mechanisms by which protection is achieved in the different model systems. We also discuss the potential relevance of insights gained from these approaches for enhancing islet cell survival and function in both major forms of diabetes.
Recommended Citation
Guoxun Chen, H. E. Hohmeier, V. V. Tran, R. Gasa, and C. B. Newgard. "Inflammatory Mechanisms in Diabetes: Lessons from the B-cell" International Journal of Obesity 27 (2003): S12-S16.