Masters Theses
Date of Award
5-2023
Degree Type
Thesis
Degree Name
Master of Science
Major
Chemistry
Major Professor
Konstantinos D. Vogiatzis
Committee Members
Konstantinos D. Vogiatzis, Sharani Roy, David M. Jenkins
Abstract
Nitrous oxide (N2O) can undergo an oxygen atom transfer (OAT) reaction resulting in inert nitrogen gas (N2O) while transferring an oxygen atom to a molecular complex or material. This process is of catalytic importance since this OAT reaction can be leveraged to form iron(IV)-oxo sites, which are known to be catalytic intermediates. Here, an investigation of the ligand field effects on primarily iron(II) complexes for the formation of iron(IV)-oxo sites with nitrous oxide as the oxidant is reported. An initial database of sixty-four molecular complexes with ligand environments varying in field strength and coordination geometry was studied using density functional theory (DFT) calculations. Additional structures were also studied to specifically interrogate a trend observed in the initial database while investigating potential predictive descriptors for the OAT reaction barrier. General design principles rooted in the performance of the ligand fields assessed are discussed and have potential applications in catalyst design for both molecular complexes and metal organic frameworks (MOFs).
Recommended Citation
Robertson, Tobias Barthalomew, "Development and Study of Small Database for the Activation of Nitrous Oxide Towards Formation of Iron(IV)-Oxo Species. " Master's Thesis, University of Tennessee, 2023.
https://trace.tennessee.edu/utk_gradthes/9225
Nitrous Oxide Coordinated Structures
TS_Structures.txt (86 kB)
Transition State Structures