Masters Theses

Date of Award


Degree Type


Degree Name

Master of Science


Electrical Engineering

Major Professor

Seddik Djouadi

Committee Members

J. Douglas Birdwell, James J. Nutaro


Model reduction is a powerful and ubiquitous tool used to reduce the complexity of a dynamical system while preserving the input-output behavior. It has been applied throughout many different disciplines, including controls, fluid and structural dynamics. Model reduction via proper orthogonal decomposition (POD) is utilized for of control of partial differential equations. In this thesis, the analytical expressions of POD modes are derived for the heat equation. The autocorrelation function of the latter is viewed as the kernel of a self adjoint compact operator, and the POD modes and corresponding eigenvalues are computed by solving homogeneous integral equations of the second kind. The computed POD modes are compared to the modes obtained from snapshots for both the one-dimensional and two-dimensional heat equation. Boundary feedback control is obtained through reduced-order POD models of the heat equation and the effectiveness of reduced-order control is compared to the full-order control. Moreover, the explicit computation of the POD modes and eigenvalues are shown to allow the computation of different n-widths approximations for the heat equation, including the linear, Kolmogorov, Gelfand, and Bernstein n-widths.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."