Masters Theses
Date of Award
5-2010
Degree Type
Thesis
Degree Name
Master of Science
Major
Geography
Major Professor
Henri D. Grissino-Mayer
Committee Members
Carol Harden, Sally Horn
Abstract
Fire, logging, livestock grazing, and insect outbreaks are disturbances that have significantly influenced both the historic and present fire regimes. The composition and structure of vegetation communities within Great Smoky Mountains National Park (GSMNP) have likely changed in response to these disturbances. Two study sites (CRX, the near site, and CRT, the far site) were chosen along the Cooper Road Trail based on topographic separation, presence of mixed oak-pine communities, presence of fire-scarred yellow pine trees, and GSMNP land acquisition records. To quantify and evaluate fire regimes, individual fire histories were developed for each site from fire-scarred yellow pine trees, and two 1000 m2 (0.1 ha) study plots were established for vegetation surveys. Fire history analysis yielded mean fire intervals of 6.2 years at the near site, 3.4 years at the far site, and 3.2 years when combined. Spatial analysis showed significant differences in fire activity between study sites. Temporal analysis showed significant differences in mean fire intervals between the pre-settlement (1720–1818) and post-settlement periods (1819–1934). Superposed epoch analysis showed the over-riding influence of climate at these sites. At the near site, trees displayed greater species diversity, larger diameter, and older age. Eastern white pine, pitch pine, red maple, and black gum were the dominant species. At the far site, tree species diversity was lower and trees were generally younger. Mixed oak-pine communities are succeeding to a canopy dominated by shade-tolerant, fire-sensitive species such as eastern white pine and red maple. Without fire disturbance, yellow pine communities will cease to regenerate, as will oak species that prefer a fire-maintained habitat.
Recommended Citation
Feathers, Ian C., "Fire History from Dendrochronological Analyses at Two Sites near Cades Cove, Great Smoky Mountains National Park, U.S.A.. " Master's Thesis, University of Tennessee, 2010.
https://trace.tennessee.edu/utk_gradthes/619