Masters Theses
Date of Award
8-2010
Degree Type
Thesis
Degree Name
Master of Science
Major
Polymer Engineering
Major Professor
Wei He
Committee Members
Roberto Benson, Tim Sparer
Abstract
Planar supported, polymerized phospholipid bilayers (PPBs) composed of 1,2-bis[10-(2’,4’-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine (bis-SorbPC or BSPC) were generated by a redox polymerization method. The PPBs were supported by a silicon substrate. The PPBs were characterized and tested for uniformity and stability under physiological conditions. The PPBs were analyzed in vitro with murine derived cells that are pertinent to the host response. Cellular attachment and phenotypic changes in RAW 264.7 macrophages and NIH 3T3 fibroblasts were investigated on PPBs and compared to bare silicon controls. Fluorescent and SEM images were used to observe cellular attachment and changes in cellular behavior. The PPBs showed much lower cellular adhesion for both cell lines than bare silicon controls. Of the cells that attached to the PPBs, a very low percentage showed the same morphological expressions as seen on the controls. The hypothesis generated from this work is that defects in the PPBs mediated the cellular attachment and morphological changes that were observed. Finally, a layer-by-layer (LbL) deposition of a poly(acrylic acid) (PAA) and poly(N-vinylpyrrolidone) (PNVP) alternating bilayer was attempted as a proof of concept for future modification of this system.
Recommended Citation
Page, Jonathan Michael, "Formation and Characterization of Polymerized Supported Phospholipid Bilayers and the in vitro Interactions of Macrophages and Fibroblasts.. " Master's Thesis, University of Tennessee, 2010.
https://trace.tennessee.edu/utk_gradthes/736