Masters Theses

Date of Award

8-2010

Degree Type

Thesis

Degree Name

Master of Science

Major

Polymer Engineering

Major Professor

Wei He

Committee Members

Roberto Benson, Tim Sparer

Abstract

Planar supported, polymerized phospholipid bilayers (PPBs) composed of 1,2-bis[10-(2’,4’-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine (bis-SorbPC or BSPC) were generated by a redox polymerization method. The PPBs were supported by a silicon substrate. The PPBs were characterized and tested for uniformity and stability under physiological conditions. The PPBs were analyzed in vitro with murine derived cells that are pertinent to the host response. Cellular attachment and phenotypic changes in RAW 264.7 macrophages and NIH 3T3 fibroblasts were investigated on PPBs and compared to bare silicon controls. Fluorescent and SEM images were used to observe cellular attachment and changes in cellular behavior. The PPBs showed much lower cellular adhesion for both cell lines than bare silicon controls. Of the cells that attached to the PPBs, a very low percentage showed the same morphological expressions as seen on the controls. The hypothesis generated from this work is that defects in the PPBs mediated the cellular attachment and morphological changes that were observed. Finally, a layer-by-layer (LbL) deposition of a poly(acrylic acid) (PAA) and poly(N-vinylpyrrolidone) (PNVP) alternating bilayer was attempted as a proof of concept for future modification of this system.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS