Masters Theses

Orcid ID

http://orcid.org/0000-0002-6105-0322

Date of Award

8-2019

Degree Type

Thesis

Degree Name

Master of Science

Major

Ecology and Evolutionary Biology

Major Professor

Joseph Williams Jr.

Committee Members

Brian O'Meara, Randall Small, Andreas Nebenführ

Abstract

Premise of the Study: Male gametophytes of most seed plants deliver sperm to eggs via a pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern attributed to more effective haploid selection under stronger pollen competition. Paradoxically, whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. Pollen tube polyploidy should initially accelerate PTGR because increased heterozygosity and gene dosage should increase metabolic rates, however polyploidy should also independently increase tube cell size, causing more work which should decelerate growth. We asked how genome size changes have affected the evolution of seed plant PTGRs. Methods: We assembled a phylogenetic tree of 451 species with known PTGRs. We then used comparative phylogenetic methods to detect effects of neo-polyploidy (within-genus origins), DNA content, and WGD history on PTGR, and correlated evolution of PTGR and DNA content. Key Results: Gymnosperms had significantly higher DNA content and slower PTGR optima than angiosperms, and their PTGR and DNA content were negatively correlated. For angiosperms, 89% of model weight favored Ornstein-Uhlenbeck models with a faster PTGR optimum for neo-polyploids, but PTGR and DNA content were not correlated. In comparisons of within-genus and intraspecific-cytotype pairs, PTGRs of neo-polyploids ≤ paleo-polyploids. Conclusions: Genome size increases should negatively affect PTGR when genetic consequences of WGDs are minimized, as found in intra-specific autopolyploids (low heterosis) and gymnosperms (few WGDs). But in angiosperms, the higher PTGR optimum of neo-polyploids and non-negative PTGR-DNA content correlation suggest that recurrent WGDs have caused substantial PTGR evolution in a non-haploid state.

Comments

Portions of this document have been previously published in American Journal of Botany.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS