Masters Theses

Date of Award

5-2003

Degree Type

Thesis

Degree Name

Master of Science

Major

Electrical Engineering

Major Professor

Syed K. Islam

Committee Members

Benjamin J. Blalock, Donald W. Bouldin

Abstract

Wireless communication devices including cordless phones and modern digital cellular systems (DCSs) use portable transceiver systems. The frequency synthesis of this type of transceiver system is done using a phase-locked loop oscillator. Traditional on-chip implementation of a complete phase-locked loop using a ring type voltage controlled oscillator contributes higher noise at the output. An alternative architecture, phase-locked loop (PLL) with wide loop-bandwidth, is proposed in this research to suppress the noise from the traditional ring oscillator. The proposed PLL is amendable to on-chip integration as well as commercially suitable for a Digital Enhancement Cordless Telephone (DECT) system which needs flexible noise margin.

In this research, a 1.5552 GHz PLL-based frequency synthesizer is designed with a noisy ring oscillator. The wide loop-bandwidth approach is applied in designing the PLL to suppress the VCO noise. In this type of frequency synthesizer, the frequency divider is operated at higher frequencies with less noise and care is taken to design the delay flip-flops and logic gates that can be operated at higher frequencies. Current-mode control can be employed in designing the logic gates and the delay flip-flop to enhance the speed performance of the divider. An alternate approach in designing a high-speed divider using a current-mode control approach is also presented.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS