Masters Theses
Date of Award
12-2016
Degree Type
Thesis
Degree Name
Master of Science
Major
Mechanical Engineering
Major Professor
Joseph C. Majdalani
Committee Members
Christian G. Parigger, Milton Davis Jr.
Abstract
This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of energy-optimized variants utilizing Lagrangian optimization techniques. This effort demonstrates that multiple interesting energy states and associated velocity components may exist. The flow field properties are further evaluated, and both the base analytical solutions and its energy-optimized variants are verified via numeric integration techniques and the use of computational fluid dynamics.
Recommended Citation
Fist, Andrew Steven, "Development, Analysis, and Optimization of a Swirl-Promoting Mean Flow Solution for Solid Rocket Motors. " Master's Thesis, University of Tennessee, 2016.
https://trace.tennessee.edu/utk_gradthes/4264
Included in
Aerodynamics and Fluid Mechanics Commons, Applied Mechanics Commons, Engineering Physics Commons, Propulsion and Power Commons, Space Vehicles Commons