Masters Theses

Date of Award

5-2015

Degree Type

Thesis

Degree Name

Master of Science

Major

Electrical Engineering

Major Professor

Benjamin J. Blalock

Committee Members

Charles L. Britton, Milton N. Ericson

Abstract

Data acquisition systems capable of extreme temperature and radiation environments are of dire need in an era of great nuclear energy generation. Efforts to respond to recent nuclear accidents, such as those caused by natural disasters at Fukushima, have suffered in promptness and effectiveness due to the lack of information gathered from these sites. Currently, there are no systems available that accurately acquire, digitize, and remotely report this data in the presence of harsh radiation.

Using a mask-programmable analog array prototype chip designed for Triad Semiconductor and an FMI frequency synthesizer, both verified to beyond 300 kRad and 125ºC and capable of analog signal conditioning and digitization, a radiation-hardened data acquisition system is produced. This system will report three parameters of importance to the assessment of a nuclear reactor environment: gamma radiation, temperature, and pressure. Through a three-task development process, the discrete part selection and overall system will be outlined, detailed board design will be shown, and end-to-end system calibration and radiation testing will be performed and analyzed. The evaluation of target environments will provide specifications for system performance, as well as determine successful completion of the work.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS