Masters Theses

Date of Award

8-2014

Degree Type

Thesis

Degree Name

Master of Science

Major

Mechanical Engineering

Major Professor

Trevor Moeller

Committee Members

Milton Davis, James Simonton

Abstract

With gas turbine engine testing becoming very expensive because of the increasing complexity involved with the engine, engine subsystems, and test support systems, a low-cost Turbine Engine Component Testbed (TECT) is proposed. This engine build is given the designation J1-H-02. In the present study, a small augmented gas turbine engine (GTE) is constructed. The TECT engine is built with modularity as a key design consideration to allow for flame-tube patterns and augmentor sections to be changed quickly for combustion experiments that have gained impetus due to combustion anomalies/instabilities inherent with future military engine augmentors. This testbed allows for an effective way to test new sensors or analytical techniques before full scale testing by allowing an intermediate Technology Readiness Level (TRL) at low-cost and quick schedule turnaround. The TECT was completed using a minor financial investment when matched to comparable capabilities. A data acquisition and control system was developed and tested that allows for real-time engine feedback and control schemes. The components were analyzed for the proper failure modes and performance was predicted using a combination of hand calculations and engine performance prediction software. The compressor performance was predicted using turbomachinery relationships and geometry, then compared with experimental data. The TECT engine was tested across its intended operational envelope at sea-level static (SLS) conditions, with the baseline performance data documented. The applied data reduction approaches were developed and presented.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS