Masters Theses
Date of Award
12-2013
Degree Type
Thesis
Degree Name
Master of Science
Major
Civil Engineering
Major Professor
Stephanie C. TerMaath
Committee Members
Edwin G. Burdette, Richard M. Bennett
Abstract
Bonded fiber composite repair on damaged metal structures can be an effective method to restore load carrying capacity or increase damage resistance. Low velocity impacts can cause barely visible damage to the interior structure of laminated composites. Delamination between plies is of particular concern in these composites. Impacts may also create disbonds between the patch and metal substrate. A building-block approach was suggested to model impact damage to composite patches. Composite, adhesive, and metal substrate damage models were separately validated and then combined. Cohesive Zone theory modeled interlaminar composite damage and adhesive damage. Hashin failure criteria with energy dissipation based damage evolution modeled intralaminar damage to the composite. The Johnson-Cook plasticity model captured the metal substrate’s behavior. A full model of a hybrid composite-metal system was then assembled and validated. Finally, a sensitivity study was performed that found that increasing ply thickness and fiber content improved composite patch impact damage resistance.
Recommended Citation
Goodmiller, Geoffrey Roy, "Investigation of Composite Patch Performance Under Low-Velocity Impact Loading. " Master's Thesis, University of Tennessee, 2013.
https://trace.tennessee.edu/utk_gradthes/2606