Masters Theses

Date of Award

12-2012

Degree Type

Thesis

Degree Name

Master of Science

Major

Chemistry

Major Professor

Sheng Dai

Committee Members

George Schweitzer, Michael Sepaniak

Abstract

This thesis focuses on synthesis and characterization of palladium-based nanoparticles. Background information of the research in this thesis is provided in Chapter 1. Preparation and characterization of pure palladium nanoparticles are presented in Chapter 2. A fast and convenient method to prepare ultra small Pd nanoparticles via Pluronic P123 reduction is discussed in detail. Impregnation method and poly method are also studied in this chapter. Chapter 3 reports the studies of these methods to prepare ultra small bimetallic (bimetallic means a mixture of two metals) palladium-based nanoparticles. Oleylamine-mediated method used Pd nanoparticles prepared via P123 reduction as precursor. Ultra small palladium-based nanoparticles are prepared in this way. With the assistance of trioctylphosphine complex as precursor, tiny palladium-based bimetallic nanoparticles can be prepared with certain structure. The structure of these bimetallic nanoparticles gives a better electrochemical activity than pure palladium nanoparticles. When loaded on mesoporous carbon, these tiny trioctylphosphine-assisted palladium nanoparticles displayed good thermal stability.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS