Doctoral Dissertations
Date of Award
8-2010
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Chemistry
Major Professor
George W. Kabalka
Committee Members
Shane Foister, Ziling (Ben) Xue, Paul Dalhaimer
Abstract
This dissertation summarizes research efforts focused on the use of boron and transition metal halides to form new carbon-carbon and carbon-halide bonds. The boron halide mediated alkyne-aldehyde coupling reaction to generate 1,3,5-triaryl-1,5-dihalo-1,4-dienes was reinvestigated in an attempt to explain the stereochemistry observed during changing of both the mode of addition and the reaction temperature. Either (Z,Z)-1,4-dienes or (Z,E)-1,4-dienes can be the predominant product depending on reaction conditions used. This mechanistic investigation also led to the discovery of several novel reactions. These include the stereoselective preparation of (Z)-3-chloroallylic ethers from the reaction of alkenylboron dichlorides with aryl aldehydes in the presence of an amine; the titanium(IV) halide coupling of alkoxides and alkynes; the haloallylation of aryl aldehydes with boron trihalide using different allylmetals; and the base induced elimination of the haloallylated products to form 1,3-dienes. The results of these studies strongly imply a cationic mechanism. The new reactions described herein can be characterized as atom-efficient, environmentally friendly, and capable of generating the desired products in good to excellent yields.
Recommended Citation
Quinn, Michael Patrick, "Boron and Titanium(IV) Halide Mediated Reactions. " PhD diss., University of Tennessee, 2010.
https://trace.tennessee.edu/utk_graddiss/908