Doctoral Dissertations

Date of Award

12-2022

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Mechanical Engineering

Major Professor

Kivanc Ekici

Committee Members

Kivanc Ekici, Jay Frankel, Vasilios Alexiades, Zhili Zhang

Abstract

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project to significantly more accurate solutions, i.e. smaller residual. The technique can be combined with other convergence schemes like multigrid and adaptive timestepping. The technique is generalizable and in this work is demonstrated to accelerate steady and unsteady flow solutions; continuous and discrete adjoint sensitivity solutions; and one-shot design optimization solutions. This final application, reduced-order model accelerated one-shot optimization approach, in particular represents a step towards more efficient aerodynamic design optimization.

Through this series of applications, different basis vectors were considered and best practices for snapshot collection procedures were outlined. The major outcome of this dissertation is the development and demonstration of this reduced-order model acceleration technique. This work includes the first application of the reduced-order model-based acceleration method to an explicit one-shot iterative optimization process.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS