Doctoral Dissertations

Date of Award

8-2020

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Electrical Engineering

Major Professor

Garrett Rose

Committee Members

Jayne Wu, Hoon Hwangbo, Jinyuan Stella Sun

Abstract

Security of systems has become a major concern with the advent of technology. Researchers are proposing new security solutions every day in order to meet the area, power and performance specifications of the systems. The additional circuit required for security purposes can consume significant area and power. This work proposes a solution which utilizes discrete-time chaos-based logic gates to build a system which addresses multiple hardware security issues. The nonlinear dynamics of chaotic maps is leveraged to build a system that mitigates IC counterfeiting, IP piracy, overbuilding, disables hardware Trojan insertion and enables authentication of connecting devices (such as IoT and mobile). Chaos-based systems are also used to generate pseudo-random numbers for cryptographic applications.The chaotic map is the building block for the design of discrete-time chaos-based oscillator. The analog output of the oscillator is converted to digital value using a comparator in order to build logic gates. The logic gate is reconfigurable since different parameters in the circuit topology can be altered to implement multiple Boolean functions using the same system. The tuning parameters are control input, bifurcation parameter, iteration number and threshold voltage of the comparator. The proposed system is a hybrid between standard CMOS logic gates and reconfigurable chaos-based logic gates where original gates are replaced by chaos-based gates. The system works in two modes: logic locking and authentication. In logic locking mode, the goal is to ensure that the system achieves logic obfuscation in order to mitigate IC counterfeiting. The secret key for logic locking is made up of the tuning parameters of the chaotic oscillator. Each gate has 10-bit key which ensures that the key space is large which exponentially increases the computational complexity of any attack. In authentication mode, the aim of the system is to provide authentication of devices so that adversaries cannot connect to devices to learn confidential information. Chaos-based computing system is susceptible to process variation which can be leveraged to build a chaos-based PUF. The proposed system demonstrates near ideal PUF characteristics which means systems with large number of primary outputs can be used for authenticating devices.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS