Doctoral Dissertations

Date of Award

8-2021

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Computer Engineering

Major Professor

Hairong Qi

Committee Members

Hairong Qi, Jens Gregor, Amir Sadovnik, David Irick

Abstract

Autonomous driving vehicles depend on their perception system to understand the environment and identify all static and dynamic obstacles surrounding the vehicle. The perception system in an autonomous vehicle uses the sensory data obtained from different sensor modalities to understand the environment and perform a variety of tasks such as object detection and object tracking. Combining the outputs of different sensors to obtain a more reliable and robust outcome is called sensor fusion. This dissertation studies the problem of sensor fusion for object detection and object tracking in autonomous driving vehicles and explores different approaches for utilizing deep neural networks to accurately and efficiently fuse sensory data from different sensing modalities.

In particular, this dissertation focuses on fusing radar and camera data for 2D and 3D object detection and object tracking tasks. First, the effectiveness of radar and camera fusion for 2D object detection is investigated by introducing a radar region proposal algorithm for generating object proposals in a two-stage object detection network. The evaluation results show significant improvement in speed and accuracy compared to a vision-based proposal generation method. Next, radar and camera fusion is used for the task of joint object detection and depth estimation where the radar data is used in conjunction with image features to generate object proposals, but also provides accurate depth estimation for the detected objects in the scene. A fusion algorithm is also proposed for 3D object detection where where the depth and velocity data obtained from the radar is fused with the camera images to detect objects in 3D and also accurately estimate their velocities without requiring any temporal information. Finally, radar and camera sensor fusion is used for 3D multi-object tracking by introducing an end-to-end trainable and online network capable of tracking objects in real-time.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS