Doctoral Dissertations
Date of Award
12-2009
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Electrical Engineering
Major Professor
Leon M. Tolbert
Committee Members
Fangxing "Fran" Li, Syed Islam, David K. Irick
Abstract
Today many efforts are made to research and use new energy sources because the potential for an energy crisis is increasing. Multilevel converters have gained much attention in the area of energy distribution and control due to its advantages in high power applications with low harmonics. They not only achieve high power ratings, but also enable the use of renewable energy sources. The general function of the multilevel converter is to synthesize a desired high voltage from several levels of dc voltages that can be batteries, fuel cells, etc.
This dissertation presents a new hybrid multilevel inverter for voltage boost. The inverter consists of a standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter leg. It can use only a single DC power source to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors or batteries. The proposed inverter could be applied in hybrid electric vehicles (HEVs) and fuel cell based hybrid electric vehicles (FCVs). It is of voltage boosting capability and eliminates the magnetics. This feature makes it suitable for the motor running from low to high power mode. In addition to hybrid electric vehicle applications, this paper also presents an application where the hybrid multilevel inverter acts as a renewable energy utility interface.
In this dissertation, the structure, operation principle, and modulation control schemes of the proposed hybrid multilevel inverter are introduced. Simulation models and results are described and analyzed. An experimental 5 kW prototype inverter is built and tested.
Recommended Citation
Liu, Haiwen, "Design and Application of Hybrid Multilevel Inverter for Voltage Boost. " PhD diss., University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/618