Doctoral Dissertations
Date of Award
5-2009
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Materials Science and Engineering
Major Professor
Philip D. Rack
Abstract
Electrical interfacing between semiconductor devices and biological materials has been studied for live cell probing which will make it possible to perform direct electrical sensing of cells. To extend the applicability of extracellular and planar microelectrode arrays, recently vertically aligned nanofibers (VACNFs) have been integrated with micro electrode arrays (MEA) for applications such as cell membrane mimics, gene delivery arrays, neuroelectrochemical interfacing arrays, superhydrophobic switches, and intracellular probes. The main drawback of VACNF-MEA devices are the low density of electrodes and passive addressing approach. In order to increase the number of elements of an MEA and enable both stimulation and recording on the same platform, an actively addressed thin film transistor (TFT) array platform was developed. Active matrix-TFTs are highly functional devices which have been used widely as backplanes in display electronics field over the past few decades.VACNFs were integrated onto the TFT array (TFT-VACNF) as they enhance the electrical sensitivity to the cell relative to standard planar arrays; furthermore, the vertical electrodes provide the potential for intracellular sensing within individual cells. This device platform provides great potential as an advanced microelectrode array for direct cell sensing, probing, and recording with a high electrode density and active addressability. In this study, VACNFs were successfully integrated onto TFT devices to demonstrate a new microelectrode array platform. The materials and processes of the TFT structure were designed to be compatible with the requisite high-temperature (~700°C) and direct current Plasma Enhanced Chemical Vapor Deposition (dc-PECVD) VACNF growth process.To extend the applicability of utilizing these vertical electrodes, this dissertation describes: the characterization and optimization of each layer for the TFT; the fabrication process and issues for active matrix TFT array; the critical device integration issues of VACNFs onto active matrix TFT arrays are elaborated; and the initial and final device characteristics are reported.
Recommended Citation
Park, Jung Won, "Characterization of materials and fabrication of active matrix thin film transistor arrays for electrical interfacing of biological materials. " PhD diss., University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/6023