Doctoral Dissertations

Date of Award

5-2009

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Electrical Engineering

Major Professor

Benjamin J. Blalock

Abstract

Low-power analog design represents a developing technological trend as it emerges from a rather limited range of applications to a much wider arena affecting mainstream market segments. It especially affects portable electronics with respect to battery life, performance, and physical size. Meanwhile, low-power analog design enables technologies such as sensor networks and RFID. Research opportunities abound to exploit the potential of low power analog design, apply low-power to established fields, and explore new applications. The goal of this effort is to design a low-power reference circuit that delivers an accurate reference with very minimal power consumption. The circuit and device level low-power design techniques are suitable for a wide range of applications. To meet this goal, switched capacitor bandgap architecture was chosen. It is the most suitable for developing a systematic, and groundup, low-power design approach. In addition, the low-power analog cell library developed would facilitate building a more complex low-power system. A low-power switched capacitor bandgap was designed, fabricated, and fully tested. The bandgap generates a stable 0.6-V reference voltage, in both the discrete-time and continuous-time domain. The system was thoroughly tested and individual building blocks were characterized. The reference voltage is temperature stable, with less than a 100 ppm/°C drift, over a --60 dB power supply rejection, and below a 1 [Mu]A total supply current (excluding optional track-and-hold). Besides using it as a voltage reference, potential applications are also described using derivatives of this switched capacitor bandgap, specifically supply supervisory and on-chip thermal regulation.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS