Doctoral Dissertations
Date of Award
12-2008
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Mechanical Engineering
Major Professor
Kenneth D. Kihm
Committee Members
Majid Keyhani, Jayne Wu, Thomas L. Ferrell
Abstract
My doctoral research has focused on the development of surface plasmon resonance (SPR) reflectance imaging technique to detect near-field transport properties such as concentration, temperature, and salinity in micro/nano fluidic phenomena in label-free, real-time, and full-field manner. A label-free visualization technique based on surface plasmon resonance (SPR) reflectance sensing is presented for real-time and full-field mapping of microscale concentration and temperature fields. The key idea is that the SPR reflectance sensitivity varies with the refractive index of the near-wall region of the test mixture fluid. The Fresnel equation, based on Kretschmann’s theory, correlates the SPR reflectance with the refractive index of the test medium, and then, the refractive index correlates with the mixture concentration or temperature. The basic operation principle is summarized and the laboratory-developed SPR imaging/analyzing system is described with the measurement sensitivity, uncertainties and detection limitations of the implemented SPR reflectance imaging. Total five proposed uses of SPR reflectance imaging technique are presented: (1) micromixing concentration field development of ethanol penetrating into water contained in a micro-channel, (2) full-field detection of the near-wall salinity profiles for convective/diffusion of saline droplet into water, (3) full-field and real-time surface plasmon resonance imaging thermometry, (4) correlation of near-field refractive index of nanofluids with surface plasmon resonance reflectance, and (5) unveiling hidden complex cavities formed during nanocrystalline self-assembly.
Recommended Citation
Kim, Iltai, "Label-free mapping of near-field transport properties of micro/nano-fluidic phenomena using surface plasmon resonance (SPR) reflectance imaging. " PhD diss., University of Tennessee, 2008.
https://trace.tennessee.edu/utk_graddiss/557