Doctoral Dissertations
Date of Award
8-2015
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Physics
Major Professor
Robert Compton
Committee Members
Marianne Breinig, Shawn R. Campagna, Joseph Macek
Abstract
In this dissertation we studied azobenzene and seven of its derivatives experimentally in addition to comprehensive ab initio computational investigation. Gas phase ion chemistry studies sre a rich and important area of chemical physics. We used an energy resolved collision induced dissociation technique to study the chemical bonding of these molecule negative or positive ions. We studied the fragment ions which we have detected in the mass spectrum computationally as well. Doing so we experimentally measured the bond dissociation energies and compared them with those resulting from the quantum chemistry computations. We also performed other experiments such as Raman spectroscopy, NMR spectroscopy and UV-Vis spectroscopy to experimentally study the electronic structure of these molecules. We have utilized state of the art computational algorithms such as high accuracy multi-level calculations to study thermochemical properties of the parent neutral molecules as well as precursor and fragment negative and positive ions and neutrals. We have calculated electron affinities and compared results from different methods such as density functional theory methods and perturbative methods such as MP2 with multi-level high accuracy calculations to compare their performances. Many high accuracy multi-level calculations which we have done results compared with the experimental results can provide an accurate benchmark for comparing the performance of different theoretical methods for different molecules and ions. Comparing our experimental results for electron affinities and bond dissociation energies with theoretically obtained results, we have proved the ab initio computational results can be accurate and close to those can be measured experimentally.
Recommended Citation
Rezaee, Mohammadreza, "Experimental and Ab initio Computational Study of Azobenzene and Several of its Derivatives. " PhD diss., University of Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3518