Doctoral Dissertations
Date of Award
5-2014
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Nuclear Engineering
Major Professor
Lawrence W. Townsend
Committee Members
Lawrence H. Heilbronn, Ronald E. Pevey, Thomas Handler
Abstract
Monte Carlo transport codes such as FLUKA provide an accurate and effective method to model the transport of space radiation. However, their use in time-sensitive applications is limited because they do not generate results as quickly as other methods, such as deterministic transport codes. The development of a pre-calculated lookup tool for use in complex space radiation environments allows the calculation of space radiation quantities such as dose, dose equivalent, and fluence using Monte Carlo results with minimal loss of accuracy. In this work, a lookup tool suitable for rapidly estimating radiation exposures is developed using the FLUKA Monte Carlo code and then compared to experimental data and other simulations using other codes (HETC-HEDS and HZETRN). Specifically, the FLUKA calculations were compared to experimental data from the Cosmic Ray Telescope for the Effects of Radiation (“CRaTER”) instrument, which is carried on the Lunar Reconnaissance Orbiter (“LRO”), as well as to HETC-HEDS and HZETRN calculations simulating CRaTER. These comparisons demonstrate both the usefulness and the limitations of a pre-calculated lookup tool to rapidly model the effects of galactic cosmic radiation and solar particle events. The pre-calculated lookup tool was also used to calculate organ dose equivalent and effective dose behind a large number of shielding combinations.
Recommended Citation
Brittingham, John Macdougall, "Development of a FLUKA-Based Lookup Tool for Rapid Analysis of Radiation Exposures in Space Environments. " PhD diss., University of Tennessee, 2014.
https://trace.tennessee.edu/utk_graddiss/2681