Doctoral Dissertations
Date of Award
12-2011
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Food Science and Technology
Major Professor
Qixin Zhong
Committee Members
P. Michael Davidson, Federico Harte, Douglas Hayes
Abstract
Naturally occurring food antimicrobials such as plant essential oils are receiving tremendous interest as intervention systems to enhance microbiological safety and quality. Poor water solubility of essential oils makes it difficult to incorporate them in foods, impacting visual appearance, antimicrobial effectiveness, and possibly organoleptic properties. Engineered nanoscale delivery systems can principally solve these challenges, but those based on low-cost food ingredients and inexpensive and scalable processes are currently scarce. This dissertation presents a simple and scalable two-step technology to prepare nano-delivery systems. The first encapsulation step, based on emulsion-evaporation, involves preparing emulsions composed of an oil phase with thymol or eugenol, major compounds in extracts from thyme and clove respectively, in hexane and an aqueous phase with conjugates of whey protein isolate and maltodextrin, followed by evaporation of hexane by spray drying. The second step is to hydrate spray dried capsules to enable the formation of nanoscale particles. The encapsulation performance and dispersion characteristics were affected by amounts and types of conjugates (ratio of protein: maltodextrin and maltodextrin chain length), volume fraction and composition of the oil phase. The optimal conditions corresponded to 55.8 % encapsulation efficiency and 12.6 % loading for thymol and 47.9 % encapsulation efficiency and 7.9 % loading for eugenol. Dispersions prepared from the identified capsules contained particles smaller than 100 nm and were transparent at pH 3.0-7.0 and 0-50 mM before and after heating at 80°C for 15 min. Nano-dispersions and free oil were tested for antimicrobial activity against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Salmonella typhimurium. Nano-dispersed and free antimicrobials had similar effectiveness at various pH and temperatures in tryptic soy broth and apple cider, while in 2 % reduced fat milk, nano-dispersed antimicrobials were consistently more effective than unencapsulated ones. Therefore, the commercially viable nanoscale technology presented in this study enables the delivery of lipophilic antimicrobials for enhanced microbial safety and quality, without compromising visual appearance of foods, especially clear beverages.
Recommended Citation
Shah, Bhavini Dipak, "Nano-dispersing Lipophilic Antimicrobials for Improved Food Safety. " PhD diss., University of Tennessee, 2011.
https://trace.tennessee.edu/utk_graddiss/1224