Faculty Publications and Other Works -- EECS
Document Type
Article
Publication Date
4-2013
Abstract
Wireless power transfer via inductive link is becoming a popular choice as an alternate powering scheme for biomedical sensor electronics. Spiral printed circuit board (PCB) inductors are gaining attractions for wireless power transfer applications due to their various advantages over conventional inductors such as low-cost, batch fabrication, durability, manufacturability on flexible substrates, etc. In this work, design of a multi-spiral stacked solenoidal inductor for biomedical application in 13.56 MHz band is presented. Proposed stacking method enhances the inductance density of the inductor for a given area. This paper reports an optimization technique for design and implementation of the PCB inductors. The proposed scheme shows higher inductance and better figure-of-merit values compared to PCB inductors reported in literature, which are desirable for wireless power transfer system.
Recommended Citation
Islam, Ashraf B.; Islam, Syed K.; and Tulip, Fahmida S., "Design and Optimization of Printed Circuit Board Inductors for Wireless Power Transfer System" (2013). Faculty Publications and Other Works -- EECS.
https://trace.tennessee.edu/utk_elecpubs/21
Comments
This article has been funded by the University of Tennessee's Open Publishing Support Fund.