Faculty Publications and Other Works -- Ecology and Evolutionary Biology
Source Publication
Ecology and Evolution
Document Type
Article
Publication Date
1-13-2018
DOI
10.1002/ece3.3760
Abstract
Environmental differences influence the evolutionary divergence of mating signals through selection acting either directly on signal transmission (“sensory drive”) or because morphological adaptation to different foraging niches causes divergence in “magic traits” associated with signal production, thus indirectly driving signal evolution. Sensory drive and magic traits both contribute to variation in signal structure, yet we have limited understanding of the relative role of these direct and indirect processes during signal evolution. Using phylogenetic analyses across 276 species of ovenbirds (Aves: Furnariidae), we compared the extent to which song evolution was related to the direct influence of habitat characteristics and the indirect effect of body size and beak size, two potential magic traits in birds. We find that indirect ecological selection, via diversification in putative magic traits, explains variation in temporal, spectral, and performance features of song. Body size influences song frequency, whereas beak size limits temporal and performance components of song. In comparison, direct ecological selection has weaker and more limited effects on song structure. Our results illustrate the importance of considering multiple deterministic processes in the evolution of mating signals.
Recommended Citation
Derryberry, Elizabeth Perrault, Nathalie Seddon, Graham Earnest Derryberry, Santiago Claramunt, Glenn Fairbanks Seeholzer, Robb Thomas Brumfield, and Joseph Andrew Tobias. “Ecological Drivers of Song Evolution in Birds: Disentangling the Effects of Habitat and Morphology.” Ecology and Evolution 8, no. 3 (2018). https://doi.org/10.1002/ece3.3760.
Submission Type
Publisher's Version
Supporting Information
Comments
This article was published openly thanks to the University of Tennessee Open Publishing Support Fund.
Licensed under a Creative Commons Attribution 4.0 International license.