Document Type

Article

Publication Date

12-2009

Abstract

Background

Network and clustering analyses of microarray co-expression correlation data often require application of a threshold to discard small correlations, thus reducing computational demands and decreasing the number of uninformative correlations. This study investigated threshold selection in the context of combinatorial network analysis of transcriptome data.

Findings

Six conceptually diverse methods - based on number of maximal cliques, correlation of control spots with expressed genes, top 1% of correlations, spectral graph clustering, Bonferroni correction of p-values, and statistical power - were used to estimate a correlation threshold for three time-series microarray datasets. The validity of thresholds was tested by comparison to thresholds derived from Gene Ontology information. Stability and reliability of the best methods were evaluated with block bootstrapping.

Two threshold methods, number of maximal cliques and spectral graph, used information in the correlation matrix structure and performed well in terms of stability. Comparison to Gene Ontology found thresholds from number of maximal cliques extracted from a co-expression matrix were the most biologically valid. Approaches to improve both methods were suggested.

Conclusion

Threshold selection approaches based on network structure of gene relationships gave thresholds with greater relevance to curated biological relationships than approaches based on statistical pair-wise relationships.

doi:10.1186/1756-0500-2-240

Comments

This article has been funded by the University of Tennessee's Open Publishing Support Fund.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS