Source Publication

Scientific Reports

Document Type

Article

Publication Date

12-16-2015

DOI

10.1038/srep18157

Abstract

Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

Comments

This article was published openly thanks to the University of Tennessee Open Publishing Support Fund.

Licensed under a Creative Commons Attribution 4.0 International license.

Submission Type

Publisher's Version

Files over 3MB may be slow to open. For best results, right-click and select "save as..."
COinS