Faculty Publications and Other Works -- General Biology

Document Type

Article

Publication Date

4-28-2008

Abstract

Background

Evolutionary biologists want to explain the origin of novel features and functions. Two recent but separate lines of research address this question. The first describes one possible outcome of hybridization, called transgressive segregation, where hybrid offspring exhibit trait distributions outside of the parental range. The second considers the explicit mapping of form to function and illustrates manifold paths to similar function (called many to one mapping, MTOM) when the relationship between the two is complex. Under this scenario, functional novelty may be a product of the number of ways to elicit a functional outcome (i.e., the degree of MTOM). We fuse these research themes by considering the influence of MTOM on the production of transgressive jaw biomechanics in simulated hybrids between Lake Malawi cichlid species.

Results

We characterized the component links and functional output (kinematic transmission, KT) of the 4-bar mechanism in the oral jaws of Lake Malawi cichlids. We demonstrated that the input and output links, the length of the lower jaw and the length of the maxilla respectively, have consistent but opposing relationships with KT. Based on these data, we predicted scenarios in which species with different morphologies but similar KT (MTOM species) would produce transgressive function in hybrids. We used a simple but realistic genetic model to show that transgressive function is a likely outcome of hybridization among Malawi species exhibiting MTOM. Notably, F2 hybrids are transgressive for function (KT), but not the component links that contribute to function. In our model, transgression is a consequence of recombination and assortment among alleles specifying the lengths of the lower jaw and maxilla.

Conclusion

We have described a general and likely pervasive mechanism that generates functional novelty. Simulations of hybrid offspring among Lake Malawi cichlids exhibiting MTOM produce transgressive function in the majority of cases, and at appreciable frequency. Functional transgression (i) is a product of recombination and assortment between alleles controlling the lengths of the lower jaw and the maxilla, (ii) occurs in the absence of transgressive morphology, and (iii) can be predicted from the morphology of parents. Our genetic model can be tested by breeding Malawi cichlid hybrids in the laboratory and examining the resulting range of forms and functions.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS