Document Type
Article
Publication Date
7-1-2009
Abstract
Background
The yeast cell cycle is largely controlled by the cyclin-dependent kinase (CDK) Cdc28. Recent evidence suggests that both CDK complex stability as well as function during mitosis is determined by precise regulation of Swe1, a CDK inhibitory kinase and cyclin binding partner. A model of mitotic progression has been provided by study of filamentous yeast. When facing nutrient-limited conditions, Ras2-mediated PKA and MAPK signaling cascades induce a switch from round to filamentous morphology resulting in delayed mitotic progression.
Results
To delineate how the dimorphic switch contributes to cell cycle regulation, temperature sensitive cdc28 mutants exhibiting constitutive filamentation were subjected to epistasis analyses with RAS2 signaling effectors. It was found that Swe1-mediated inhibitory tyrosine phosphorylation of Cdc28 during filamentous growth is in part mediated by Ras2 activation of PKA, but not Kss1-MAPK, signaling. This pathway is further influenced by Cks1, a conserved CDK-binding partner of elusive function with multiple proposed roles in CDK activation, transcriptional regulation and ubiquitin-mediated proteasome degradation.
Conclusion
The dynamic balance between Cks1- and Swe1-dependent regulation of Cdc28 and, thereby, the timing of mitosis during yeast dimorphism is regulated in part by Ras2/cAMP-mediated PKA signaling, a key pathway controlling filamentous growth.
Recommended Citation
Cell Division 2009, 4:12 doi:10.1186/1747-1028-4-12
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons