Date of Award


Degree Type


Degree Name

Master of Science



Major Professor

Henri D. Grissino-Mayer

Committee Members

Sally P. Horn, Carol P. Harden


This research examined the fire history of ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) forests in northwestern New Mexico. The study area included three sites in the Zuni Mountains of Cibola National Forest and one site along the boundary of El Malpais National Monument. I crossdated over 800 fire scars on 75 samples to reconstruct spatial and temporal characteristics of historic wildfire regimes. The Weibull Median Interval, Weibull Modal Interval, and Mean Fire Interval ranged from five to eight years across all sites and percent-scarred classes (all fires, 10% scarred, and 25% scarred) and indicated that low-severity wildfires occurred frequently in the study area during the period 1700 to 1880.

Wildfires were historically driven by climatic variability. Superposed Epoch Analyses revealed that wetter conditions typically occurred one to three years prior to a fire event and were followed by drought during the fire year. No relationship was found between the Pacific Decadal Oscillation (PDO) and wildfire occurrence. These findings implied that shorter-term fluxes between wet and dry conditions, rather than longer-term climatic variability, were historically most conducive to fire occurrence. Fire frequency decreased suddenly in the late 19th century across the study area, and results indicated that fire has been absent at all sites since the 1920s. Anthropogenic disturbances including livestock grazing, timber harvesting, and fire suppression likely explain observed differences between historic and contemporary wildfire regimes in the Zuni Mountains.

This research has important implications for forest management. In ponderosa pine forests of the southwestern United States, land managers often aim to restore historic ecological conditions. The reintroduction of a frequent, low-severity wildfire regime might restore some ecological patterns and processes, but given the strong legacy of human disturbances and the influences of human-induced climate change, a complete return to historic conditions may be neither possible nor desired.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."