Date of Award


Degree Type


Degree Name

Master of Science


Mechanical Engineering

Major Professor

Uday Vaidya

Committee Members

Chad Duty, Madhu S. Madhukar


The objective of this study is to investigate the bonding between glass reinforced polypropylene (glass-PP) and high-density polyethylene (HDPE) surfaces. These materials present low surface energy and surface adhesion problems. The atmospheric plasma treatment process enhances the adhesion between glass-PP and HDPE surfaces by increasing their surface energies. In this work, glass-PP and HDPE were subjected to the atmospheric/air plasma treatment by varying different parameters such as plasma intensity and number of treatments. Optimal plasma treatment conditions were then determined based on the bond strength between the surfaces after plasma treatment. Also, characterization techniques such as FTIR (Fourier Transform Infrared spectroscopy), SEM (Scanning Electron Microscopy), TGA (Thermogravimetric analysis) and surface energy determination via wettability inks were performed to understand the surface modification and chemical changes after plasma treatment. Furthermore, the effect of plasma treatment on glass/PP surface versus a neat PP surface was characterized to understand the effect of plasma treatment on fiber reinforced polymer versus neat polymer. The improvement of bond strength in glass/PP- HDPE panels was found to be higher than neat PP (neat Polypropylene)-HDPE panels. The G1c (Mode 1 interlaminar fracture toughness) value of glass/PP- HDPE panels increase from 0.1 N/mm to 5.5 N/mm whereas, the G1c value of neat PP- HDPE panels increase from 0.4 N/mm to 2.8 N/mm.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."