Date of Award

12-2007

Degree Type

Thesis

Degree Name

Master of Science

Major

Electrical Engineering

Major Professor

Leon M. Tolbert

Committee Members

S. K. Islam, J. S. Lawler

Abstract

HID lamps are used in applications where high luminous intensity is desired. They are used in a wide range of applications from gymnasiums to movie theatres, from parking lots to indoor aquaria, from vehicle headlights to indoor gardening. They require ballasts during start-up and also during operation to regulate the voltage and current levels. Electronic ballasts have advantages of less weight, smooth operation, and less noisy over electromagnetic ballasts. A number of topologies are available for the electronic ballast where control of power electronic devices is exploited to achieve the performance of a ballast for lighting. A typical electronic ballast consists of a rectifier, power factor control unit, and the resonant converter unit. Power factor correction (PFC) was achieved using a boost converter topology and average current mode control for gate control of the boost MOSFET operating at a frequency of 70 kHz. The PFC was tested with Si and SiC MOSFET at 250 W resistive load for varying input from 90 V to 264 V. An efficiency as high as 97.4% was achieved by Si MOSFET based PFC unit. However, for SiC MOSFET, the efficiency decreased and was lower than expected. A maximum efficiency of 97.2% was achieved with the SiC based PFC. A simulation model was developed for both Si and SiC MOSFET based ballasts. The efficiency plots are presented. A faster gate drive for SiC MOSFET could improve the efficiency of the SiC based systems.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS