Date of Award

12-2003

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Materials Science and Engineering

Major Professor

Michael L. Simpson

Committee Members

Philip D. Rack, Anthony Pedraza, Syed Islam

Abstract

Nanostructured carbon-based materials hold great promise as field emission (FE) cathodes for integrated FE devices. These materials display remarkable FE properties as a consequence of their unique chemical and physical properties. Among this class of materials, the vertically aligned carbon nanofiber (VACNF) is exceptional in that its synthesis can be deterministically controlled. This has enabled the characterization of the FE properties of individual VACNF grown on Si substrates. The results of these studies indicate that the VACNF is an excellent candidate for integrated FE electron sources where the generation of a focused electron beam from a microscale structure is required.

In this dissertation, the design, fabrication and characterization of FE electron sources using single VACNF cathodes is presented. This work emphasized the construction of devices using standard wafer-scale microfabrication techniques. Consequently, the compatibility of VACNF with these processes was explored in detail. Results showed that the VACNF could be incorporated into well established processes for synthesizing integrated FE electron sources.

Gated cathode electron sources and sources incorporating an integrated electrostatic focusing electrode were designed using single carbon nanofiber cathodes. Numerical simulations of the device structures were performed to analyze the electric field structure within the devices. Following fabrication of these devices, testing was performed to verify device operation demonstrating their functionality.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS