Date of Award

5-2013

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Industrial Engineering

Major Professor

Rapinder Sawhney

Committee Members

Charles Noon, Joseph Wilck, Xiaoyan Zhu

Abstract

This research has led to the development of two mathematical models to optimize the problem of packing a hybrid mix of rigid and moldable items within a three-dimensional volume. These two developed packing models characterize moldable items from two perspectives: (1) when limited discrete configurations represent the moldable items and (2) when all continuous configurations are available to the model. This optimization scheme is a component of a lean effort that attempts to reduce the lead-time associated with the implementation of dynamic product modifications that imply packing changes.

To test the developed models, they are applied to the dynamic packing changes of Meals, Ready-to-Eat (MREs) at two different levels: packing MRE food items in the menu bags and packing menu bags in the boxes. These models optimize the packing volume utilization and provide information for MRE assemblers, enabling them to preplan for packing changes in a short lead-time. The optimization results are validated by running the solutions multiple times to access the consistency of solutions. Autodesk Inventor helps visualize the solutions to communicate the optimized packing solutions with the MRE assemblers for training purposes.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS