Doctoral Dissertations

Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Life Sciences

Major Professor

Robert Hettich

Committee Members

Mircea Podar, Steven Wilhelm, Albrecht von Arnim, Loren Hauser


Historically, there has been tremendous synergy between biology and analytical technology, such that one drives the development of the other. Over the past two decades, their interrelatedness has catalyzed entirely new experimental approaches and unlocked new types of biological questions, as exemplified by the advancements of the field of mass spectrometry (MS)-based proteomics. MS-based proteomics, which provides a more complete measurement of all the proteins in a cell, has revolutionized a variety of scientific fields, ranging from characterizing proteins expressed by a microorganism to tracking cancer-related biomarkers. Though MS technology has advanced significantly, the analysis of complicated proteomes, such as plants or humans, remains challenging because of the incongruity between the complexity of the biological samples and the analytical techniques available. In this dissertation, analytical methods utilizing state-of-the-art MS instrumentation have been developed to address challenges associated with both qualitative and quantitative characterization of eukaryotic organisms. In particular, these efforts focus on characterizing Populus, a model organism and potential feedstock for bioenergy. The effectiveness of pre-existing MS techniques, initially developed to identify proteins reliably in microbial proteomes, were tested to define the boundaries and characterize the landscape of functional genome expression in Populus. Although these approaches were generally successful, achieving maximal proteome coverage was still limited by a number of factors, including genome complexity, the dynamic range of protein identification, and the abundance of protein variants. To overcome these challenges, improvements were needed in sample preparation, MS instrumentation, and bioinformatics. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: 1) network-wide, 2) pathway-specific, and 3) protein-level viewpoints. In addition, we implemented two bioinformatic approaches that were capable of decoding the plasticity of the Populus proteome, facilitating the identification of single amino acid polymorphisms and generating a more accurate profile of protein expression. Though the methods and results presented in this dissertation have direct implications in the study of bioenergy research, more broadly this dissertation focuses on developing techniques to contend with the notorious challenges associated with protein characterization in all eukaryotic organisms.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."