Date of Award


Degree Type


Degree Name

Doctor of Philosophy



Major Professor

Thomas. L. Ferrell

Committee Members

Marianne Breinig, Thomas Callcott, Ida Lee, John Quinn


Recent work by Lereu et al. (Appl. Phys. Lett. Vol. 86, 154101, 2005) demonstrates a method of all-optical transfer of modulation signals using surface plasmon excitation on thin gold films. Localized heating of the film, resulting from surface plasmon decay, alter the optical properties of the device. A similar optical modulation method is now presented using gold nanoparticles. Computational models are used to generate realistic values of the thermo-optical response of gold and the thermal dynamics of a hot nanoparticle-substrate device. Differential pump-probe reflectivity measurements were perferomed and demonstrate modulation frequencies of upto 10kHz, an improvement of two orders of magnitude over the thin-film device. Sample fabrication techniques using physical vapor deposition and interference lithography, and heat transport on the nanoscale are also discussed.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Physics Commons