Title
Influence of Nitrogen and Sulfur on Biomass Production and Carotenoid and Glucosinolate Concentrations in Watercress (Nasturtium officinale R. Br.)
Document Type
Article
Publication Date
2007
Abstract
Watercress (Nasturtium officinale R. Br.) is a perennial herb rich in the secondary metabolites of glucosinolates and carotenoids. 2-Phenethyl isothiocyanate, the predominate isothiocyanate hydrolysis product in watercress, can reduce carcinogen activation through inhibition of phase I enzymes and induction of phase II enzymes. Sulfur (S) and nitrogen (N) have been shown to influence concentrations of both glucosinolates and carotenoids in a variety of vegetable crops. Our research objectives were to determine how several levels of N and S fertility interact to affect watercress plant tissue biomass production, tissue C/N ratios, concentrations of plant pigments, and glucosinolate concentrations. Watercress was grown using nutrient solution culture under a three by three factorial arrangement, with three S (8, 16, and 32 mg/L) and three N (6, 56, and 106 mg/L) fertility concentrations. Watercress shoot tissue biomass, tissue %N, and tissue C/N ratios were influenced by N but were unaffected by changes in S concentrations or by the interaction of N × S. Tissue pigment concentrations of β-carotene, lutein, 5,6-epoxylutein, neoxanthin, zeaxanthin, and the chlorophyll pigments responded to changes in N treatment concentrations but were unaffected by S concentrations or through N × S interactions. Watercress tissue concentrations of aromatic, indole, and total glucosinolate concentrations responded to changes in N treatments; whereas aliphatic, aromatic, and total glucosinolates responded to changes in S treatment concentrations. Individual glucosinolates of glucobrassicin, 4-methoxyglucobrassicin, and gluconasturriin responded to N fertility treatments, while gluconapin, glucobrassicin, and gluconasturiin responded to changes in S fertility concentrations. Increases in carotenoid and glucosinolate concentrations through fertility management would be expected to influence the nutritional value of watercress in human diets.
Recommended Citation
Influence of Nitrogen and Sulfur on Biomass Production and Carotenoid and Glucosinolate Concentrations in Watercress (Nasturtium officinale R. Br.) Dean A. Kopsell, T. Casey Barickman, Carl E. Sams, J. Scott McElroy Journal of Agricultural and Food Chemistry 2007 55 (26), 10628-10634