Masters Theses
Date of Award
12-2010
Degree Type
Thesis
Degree Name
Master of Science
Major
Civil Engineering
Major Professor
Qiuhong Zhao
Committee Members
Edwin G. Burdette, Baoshan Huang
Abstract
Integral abutment bridges are jointless bridges in which the deck is continuous and connected monolithically with the abutment walls supported typically by a single row of piles. This thesis focuses on the effects of two major parameters on the seismic behavior of an integral abutment bridge in Tennessee by considering soil-structure interaction around the piles and in back of the abutments: (1) clay stiffness (medium vs. hard) around the piles, and (2) level of sand compaction (loose vs. dense) of the abutment wall backfilling. Modal and nonlinear time history analyses are performed on a three dimensional detailed bridge model using the commercial software SAP2000, which clearly show that (1) compacting the backfilling of the abutment wall will increase the bridge dominant longitudinal natural frequency considerably more than increasing the clay stiffness around the piles; (2) the maximum deflection and bending moment in the piles under seismic loading will happen at the pile-abutment interface; (3) under seismic loading, densely-compacted backfilling of the abutment wall is generally recommended since it will reduce the pile deflection, the abutment displacement, the moments in the steel girder, and particularly the pile moments; (4) under seismic loading, when the piles are located in firmer clay, although the pile deflection, the abutment displacement, and the maximum girder moment at the pier and the mid-span will decrease, the maximum pile moment and the maximum girder moment at the abutment will increase.
Recommended Citation
Vasheghani Farahani, Reza, "SEISMIC ANALYSIS OF INTEGRAL ABUTMENT BRIDGES CONSIDERING SOIL STRUCTURE INTERACTION. " Master's Thesis, University of Tennessee, 2010.
https://trace.tennessee.edu/utk_gradthes/838
Included in
Civil Engineering Commons, Geotechnical Engineering Commons, Structural Engineering Commons