Masters Theses
Date of Award
8-2021
Degree Type
Thesis
Degree Name
Master of Science
Major
Food Science
Major Professor
Scott C Lenaghan
Committee Members
Scott Lenaghan, C. Neal Stewart, David White, Curtis Luckett, Alessandro Occhialini
Abstract
Plant synthetic biology is a rapidly evolving field with new tools constantly emerging to drive innovation. Of particular interest is the application of synthetic biology to chloroplast biotechnology to generate plants capable of producing new metabolites, vaccines, biofuels, and high-value chemicals. Progress made in the assembly of large DNA molecules, composing multiple transcriptional units, has significantly aided in the ability to rapidly construct novel vectors for genetic engineering. In particular, Golden Gate assembly has provided a facile molecular tool for standardized assembly of synthetic genetic elements into larger DNA constructs. In this work a complete modular chloroplast cloning system (MoChlo) was developed and validated for fast and flexible chloroplast engineering in plants. A library of 128 standardized chloroplast-specific parts (47 promoters, 38 5’UTRs, 9 promoter:5’UTR fusions, 10 3’ UTRs, 14 genes of interest, and 10 chloroplast-specific destination vectors) were mined from the literature and modified for use in MoChlo assembly, along with chloroplast-specific destination vectors. The strategy was validated by assembling synthetic operons of various sizes, and determining the efficiency of assembly. This method was successfully used to generate chloroplast transformation vectors containing up to 7 transcriptional units in a single vector (~10.6 kb synthetic operon). To enable researchers with limited resources to engage in chloroplast biotechnology, and to accelerate progress in the field, the entire kit, as described, will be available from Addgene at minimal cost. Thus, the MoChlo kit represents a valuable tool for fast and flexible design of heterologous metabolic pathways for plastid metabolic engineering.
Recommended Citation
Pfotenhauer, Alexander C., "A modular cloning toolbox for chloroplast metabolic engineering. " Master's Thesis, University of Tennessee, 2021.
https://trace.tennessee.edu/utk_gradthes/6173
Included in
Biosecurity Commons, Biotechnology Commons, Food Biotechnology Commons, Genetics Commons, Molecular Genetics Commons, Plant Biology Commons