Masters Theses

Date of Award

8-2007

Degree Type

Thesis

Degree Name

Master of Science

Major

Biosystems Engineering

Major Professor

Douglas Hayes

Committee Members

Nicole Labbé, Philip Ye, Alvin Womac

Abstract

The purpose of this thesis study was to further the development of lignocellulosic biomass as a potential renewable energy source by investigating new wet chemical compositional analysis techniques to be used to monitor changes in biomass composition resulting from size reduction and separation processes such grinding and sieving. Numerous disadvantages to the standard wet chemical analysis procedure as developed by US Dept of Energy and the National Renewable Energy Laboratory (NREL) were identified as targets for possible improvements. The overall objective was utilization of ionic liquids as a “green” alternative to the use of aqueous acidic solvents employed in the NREL protocol. These experiments included direct spectral analyses to quantify the lignin constituent, and successive enzymatic hydrolysis for quantification of the cellulose constituent.

Results contained herein revealed that solubilization of biomass occurred in ionic liquids, which allowed for rapid spectroscopic determination of its lignin composition. The enzymatic hydrolysis of cellulose occurred in an ionic liquid-rich solvent system, and quantification of the cellulolytic monosaccharide products was achieved using high performance liquid chromatography.

Motivated by the disadvantages associated with the NREL biomass compositional analysis procedure, a new analysis procedure utilizing ionic liquids was proposed and developed as an approach aimed towards improving laboratory safety and analysis time. The study was approached by first quantifying the solubility of biomass in ionic liquids. Direct quantification of the lignin content was conducted by two methods, UV-visible spectrophotometric analyses after the addition of a dilution agent, acetonitrile, and Fourier Transform Infrared Spectroscopy. The cellulose component of yellow poplar was then completely hydrolyzed using a cellulolytic enzyme in the ionic liquid-rich reaction media, and the hydrolysate was then analyzed by high performance liquid chromatography for the quantification of glucose monomeric units.

Success was achieved in the design of the analysis procedure, and it was employed for the quantification of lignin and cellulose in yellow poplar. There was also a highly predictable conversion of cellulose to glucose and cellobiose by the cellulase in the ionic liquid-rich reaction media. A biomass compositional analysis procedure for the quantification of lignin and cellulose was created and was observed to be consistent in comparison with the results from the NREL protocol. The total lignin content as a percent of dry mass in yellow poplar was found to be 25.1% ± 0.8 using the NREL protocol, and 21.5% ± 0.4 and 25.6% ± 0.1 by the UV-visible and Fourier Transform Infrared Spectroscopy approaches, respectively, in the methods described herein. The glucan component was quantified as 43.5% ± 0.5 utilizing the NREL protocol and 43.6% ± 0.3 through analysis of the enzymatic hydrolysate as part of these methodologies.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS