Doctoral Dissertations
Date of Award
5-2011
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Geology
Major Professor
Jeffrey E. Moersch
Committee Members
Harry Y. McSween Jr., Gregory S. Baker, Ronald E. Pevey
Abstract
The role of water and volatiles in the solar system is of critical interest in planetary science. Evidence for the past action of water or direct observation of water on a planetary body can indicate the potential to harbor life and is critical to human exploration of the solar system. We study two very different remote sensing techniques that address the issue of identifying water-related processes on the surface of other planetary bodies, and in particular, Mars. The first technique, combined thermal infrared and visible imaging, has been used extensively on Mars for determining the thermal inertia of surface materials. In the second part of this dissertation, we develop a technique that combines remote thermophysical and visible data sets with ground-based field investigations for the identification of sedimentary features at the surfaces of alluvial fans. Several methods for remotely identifying sedimentary features will be explored using thermal and visible images. We combine results from pre-existing ground-based studies with thermal images and ground-based field investigations to develop a robust technique to be used on a variety of alluvial fans. In the third part, we characterize the remote thermophysical and visible properties of specific classes of sedimentary features on alluvial fans using the technique developed in part two. The second remote sensing technique, neutron spectroscopy, has been used on many planetary spacecraft missions for the identification of hydrogen on planetary surfaces. The Dynamic Albedo of Neutrons (DAN) instrument on the upcoming Mars Science Laboratory rover mission represents a new type of neutron detector for planetary spacecraft, with the neutron detectors mounted to a rover on the Martian surface (as opposed to in orbit around the planetary body) and neutron counts that are binned by time, energy, and location (as opposed to just by energy and location). In chapter four, we model expected neutron energies and arrival times for geologic settings where water has altered the chemistry of the near surface using available geochemical data from the Mars Exploration Rovers (MER). Particle transport models are used to determine the sensitivity of neutron detection techniques to the variations in hydrogen abundance, hydrogen layering and chemical composition measured by MER.
Recommended Citation
Hardgrove, Craig James, "Remote Sensing of Sediments and Volatiles on the Martian Surface and Terrestrial Analog Sites. " PhD diss., University of Tennessee, 2011.
https://trace.tennessee.edu/utk_graddiss/976
Included in
Geology Commons, Geophysics and Seismology Commons, Nuclear Commons