Doctoral Dissertations
Date of Award
8-2015
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Mechanical Engineering
Major Professor
Richard D. Komistek
Committee Members
William Hamel, Mohamed R. Mahfouz, Aly Fathy, Adrija Sharma
Abstract
The objective of this dissertation was to determine the mechanics of the cam-post mechanism for subjects implanted with a Rotating Platform (RP) PS TKA, Fixed Bearing (FB) PS TKA or FB Bi-Cruciate Stabilized (BCS) TKA. Additionally, a secondary goal of this dissertation was to investigate the feasibility of vibroarthrography in correlating in-vivo vibrations with features exhibited in native, arthritic and implanted knees. In-vivo, 3D kinematics were determined for subjects implanted with nine knees with a RP-PS TKA, five knees with a FB-PS TKA, and 10 knees with a FB-BCS TKA, while performing a deep knee bend. Distance between the cam-post surfaces was monitored throughout flexion and the predicted contact map was calculated. A forward dynamic model was constructed for 3 test cases to determine the variation in the nature of contact forces at the cam-post interaction. Lastly, a different set of patients was monitored using vibroarthrography to determine differences in vibration between native, arthritic and implanted knees. Posterior cam-post engagement occurred at 34° for FB-BCS, 93o for FB-PS and at 97° for RP-PS TKA. In FB-BCS and FB-PS knees, the contact initially occurred on the medial aspect of the tibial post and then moved centrally and superiorly with increasing flexion. For RP-PS TKA, it was located centrally on the post at all times. Force analysis determined that the forces at the cam-post interaction were 1.6*body-weight, 2.0*body-weight, and 1.3*body-weight for the RP-PS, FB-BCS and FB-PS TKA. Sound analysis revealed that there were distinct differences between native and arthritic knees which could be differentiated using a pattern classifier with 97.5% accuracy. Additionally, vibrations from implanted knees were successfully correlated to occurrences such as lift-off and cam-post engagement. This study suggests that mobility of the polyethylene plays a significant role in ensuring proper cam-post interaction in RP-PS TKA. The polyethylene insert rotates axially in accord with the rotating femur, maintaining central cam-post contact. This phenomenon was not observed in the FB-BCS and FB-PS TKAs.
Recommended Citation
Zingde, Sumesh M., "In Vivo Mechanics of Cam-Post Engagement in Fixed and Mobile Bearing TKA and Vibroarthrography of the Knee Joint. " PhD diss., University of Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3490
Included in
Acoustics, Dynamics, and Controls Commons, Biomechanical Engineering Commons, Biomechanics and Biotransport Commons, Biomedical Devices and Instrumentation Commons