Doctoral Dissertations

Date of Award

12-2014

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Life Sciences

Major Professor

Igor B. Jouline

Committee Members

Robert Hettich, Elias Fernandez, Elizabeth Howell

Abstract

Microbial chemotaxis receptors (chemoreceptors) are complex proteins that sense the external environment and signal for flagella-mediated motility, serving as the GPS of the cell. In order to sense a myriad of physicochemical signals and adapt to diverse environmental niches, sensory regions of chemoreceptors are frenetically duplicated, mutated, or lost. Conversely, the chemoreceptor signaling region is a highly conserved protein domain. Extreme conservation of this domain is necessary because it determines very specific helical secondary, tertiary, and quaternary structures of the protein while simultaneously choreographing a network of interactions with the adaptor protein CheW and the histidine kinase CheA. This dichotomous nature has split the chemoreceptor community into two major camps, studying either an organism’s sensory capabilities and physiology or the molecular signal transduction mechanism. Fortunately, the current vast wealth of sequencing data has enabled comparative study of chemoreceptors. Comparative genomics can serve as a bridge between these communities, connecting sequence, structure, and function through comprehensive studies on scales ranging from minute and molecular to global and ecological. Herein are four works in which comparative genomics illuminates unanswered questions across the broad chemoreceptor landscape. First, we used evolutionary histories to refine chemoreceptor interactions in Thermotoga maritima, pairing phylogenetics with x-ray crystallography. Next, we uncovered the origin of a unique chemoreceptor, isolated only from hypervirulent strains of Campylobacter jejuni, by comparing chemoreceptor signaling and sensory regions from Campylobacter and Helicobacter. We then selected the opportunistic human pathogen Pseudomonas aeruginosa to address the question of assigning multiple chemoreceptors to multiple chemotaxis pathways within the same organism. We assigned all P. aeruginosa receptors to pathways using a novel in silico approach by incorporating sequence information spanning the entire taxonomic order Pseudomonadales and beyond. Finally, we surveyed the chemotaxis systems of all environmental, commensal, laboratory, and pathogenic strains of the ubiquitous Escherichia coli, where we discovered an ancestral chemoreceptor gene loss event that may have predisposed a well-studied subpopulation to adopt extra-intestinal pathogenic lifestyles. Overall, comparative genomics is a cutting edge method for comprehensive chemoreceptor study that is poised to promote synergy within and expand the significance of the chemoreceptor field.

Appendix A.pdf (1471 kB)
Supplement for 2013 Biochemistry Paper (Ch. 2)

Appendix B.pdf (4107 kB)
Supplement for 2013 Journal of Bacteriology Paper (Ch. 5)

Dataset B1.xlsx (148 kB)
Supplementary Dataset for 2013 Biochemistry Paper (Ch. 5)

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS