Doctoral Dissertations
Date of Award
8-2013
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Life Sciences
Major Professor
Robert L. Hettich
Committee Members
Michael W. Berry, Chongle Pan, Arnold Saxton, Steve W. Wilhelm
Abstract
Shotgun proteomic experiments provide qualitative and quantitative analytical information from biological samples ranging in complexity from simple bacterial isolates to higher eukaryotes such as plants and humans and even to communities of microbial organisms. Improvements to instrument performance, sample preparation, and informatic tools are increasing the scope and volume of data that can be analyzed by mass spectrometry (MS). To accommodate for these advances, it is becoming increasingly essential to choose and/or create tools that can not only scale well but also those that make more informed decisions using additional features within the data. Incorporating novel and existing tools into a scalable, modular workflow not only provides more accurate, contextualized perspectives of processed data, but it also generates detailed, standardized outputs that can be used for future studies dedicated to mining general analytical or biological features, anomalies, and trends.
This research developed cyber-infrastructure that would allow a user to seamlessly run multiple analyses, store the results, and share processed data with other users. The work represented in this dissertation demonstrates successful implementation of an enhanced bioinformatics workflow designed to analyze raw data directly generated from MS instruments and to create fully-annotated reports of qualitative and quantitative protein information for large-scale proteomics experiments.
Answering these questions requires several points of engagement between informatics and analytical understanding of the underlying biochemistry of the system under observation. Deriving meaningful information from analytical data can be achieved through linking together the concerted efforts of more focused, logistical questions. This study focuses on the following aspects of proteomics experiments: spectra to peptide matching, peptide to protein mapping, and protein quantification and differential expression. The interaction and usability of these analyses and other existing tools are also described. By constructing a workflow that allows high-throughput processing of massive datasets, data collected within the past decade can be standardized and updated with the most recent analyses.
Recommended Citation
Adams, Rachel Michelle, "Development and Integration of Informatic Tools for Qualitative and Quantitative Characterization of Proteomic Datasets Generated by Tandem Mass Spectrometry. " PhD diss., University of Tennessee, 2013.
https://trace.tennessee.edu/utk_graddiss/2391