Faculty Publications and Other Works -- EECS
Document Type
Article
Publication Date
12-2-2009
Abstract
Abstract
Background
Network and clustering analyses of microarray co-expression correlation data often require application of a threshold to discard small correlations, thus reducing computational demands and decreasing the number of uninformative correlations. This study investigated threshold selection in the context of combinatorial network analysis of transcriptome data.
Findings
Six conceptually diverse methods - based on number of maximal cliques, correlation of control spots with expressed genes, top 1% of correlations, spectral graph clustering, Bonferroni correction of p-values, and statistical power - were used to estimate a correlation threshold for three time-series microarray datasets. The validity of thresholds was tested by comparison to thresholds derived from Gene Ontology information. Stability and reliability of the best methods were evaluated with block bootstrapping.
Two threshold methods, number of maximal cliques and spectral graph, used information in the correlation matrix structure and performed well in terms of stability. Comparison to Gene Ontology found thresholds from number of maximal cliques extracted from a co-expression matrix were the most biologically valid. Approaches to improve both methods were suggested.
Conclusion
Threshold selection approaches based on network structure of gene relationships gave thresholds with greater relevance to curated biological relationships than approaches based on statistical pair-wise relationships.
Recommended Citation
BMC Research Notes 2009, 2:240 doi:10.1186/1756-0500-2-240