Faculty Publications and Other Works -- EECS
Document Type
Article
Publication Date
7-23-2010
Abstract
Background
The continuing proliferation of high-throughput biological data promises to revolutionize personalized medicine. Confirming the presence or absence of disease is an important goal. In this study, we seek to identify genes, gene products and biological pathways that are crucial to human health, with prostate cancer chosen as the target disease.
Materials and methods
Using case-control transcriptomic data, we devise a graph theoretical toolkit for this task. It employs both innovative algorithms and novel two-way correlations to pinpoint putative biomarkers that classify unknown samples as cancerous or normal.
Results and conclusion
Observed accuracy on real data suggests that we are able to achieve sensitivity of 92% and specificity of 91%.
Recommended Citation
BMC Bioinformatics 2010, 11(Suppl 4):P21 doi:10.1186/1471-2105-11-S4-P21